Doctalill

A new standard for online
medical confidentiality

Table of contents

Introduction
End-to-end encryption
Design philosophy and threat model
End-to-end encryption protocol
Symmetric and asymmetric encryption
Envelope encryption
Secret sharing to guarantee data access
Devices and users
Virtual devices and secret sharing
Processes to keep data secure
Transparent double authentication
Transparent password authentication
Email verification backup

Conclusion

Doctolill

Copyright © 2022 Doctolib

0 O o0 N N o o o o »d A PP WO W

Introduction

End-to-end encryption

"End-to-end encryption is a system where only the users can read the
messages. In principle, it prevents potential eavesdroppers — including
telecom providers, Internet providers, and even the provider of the
communication service — from being able to access the cryptographic
keys needed to decrypt the conversation”

End-to-end encryption is ideal for securing sensitive data. With end-to-end protocols,
only users can access their data. It implies that nobody can access encryption keys,
not even the service provider.

Examples of end-to-end encryption include Signal, in which messages and videos are
encrypted end-to-end, Apple’s iMessage and Health data, and password managers
such as Dashlane.

End-to-end encryption allows these companies to provide products that manipulate
highly sensitive information. Users can use these services knowing that the service
provider cannot access their (encrypted) data. It is particularly applicable to sensitive
data such as passwords, health data, or otherwise sensitive communication.

There are, however, many limitations that prevent end-to-end encryption’s wider
adoption:

- high risk of losing access to encrypted data if users forget their passwords or
lose their devices;

- technical limits for features development;

- high cost of implementation, requiring specialized developers and long term
investment;

Finding a solution to these problems was the prerequisite for end-to-end encryption’s
adoption in a mass-market application such as Doctolib and an application to
medical confidentiality.

Doctolill

https://en.wikipedia.org/wiki/End-to-end_encryption

Design philosophy and threat model

When designing Doctolib’s encryption solution, our goal was to aim for the highest
level of confidentiality for both patients and medical professionals. Our solution is
based on the known principles of end-to-end encryption, adapted to our mass-market
use case. As we have seen, security is always relative and is more a matter of limits.

Here are the constraints we imposed ourselves when designing the solution:

1. It must be impossible for any Doctolib employee to access personal health
information. Even if someone gained access to all user data stored by
Doctolib, they should not be able to read any protected health information.

2. It must be impossible for any Doctolib employee to access encryption keys.
Encryption keys should be accessible only by end-users, and no one should be
able to modify them.

3. End-user devices are assumed safe when in use. When not in use, no health
data or encryption keys should be accessible.

This set of rules has allowed us to develop innovative features, pushing new
standards for online medical confidentiality without compromising on user
experience or functionality.

End-to-end encryption protocol

Most existing end-to-end encryption protocols are designed for securing
communications, i.e. take place in a context where both parties are present at the
same time, with short-term data retention.

Our use case is the complete opposite. We need to store data for a long period of
time and we need to asynchronously share it between users. That's why we use the
Tanker protocol, which was designed for this purpose.

Symmetric and asymmetric encryption

The basic blocks of any encryption protocol are the cryptographic primitives — or
algorithms — that are being used. These basic blocks are industry-standard and are

Doctolill

Copyright © 2022 Doctolib 4

available in open-source libraries. Within those basic blocks, two are particularly
important to understand.

Symmetric encryption makes data unreadable by encrypting it with a key. This same
symmetric key is then used to make the data readable again. With symmetric
encryption, it is thus important to make sure only intended people have access to the
encryption key.

Asymmetric encryption works with a key pair instead of a single key. The first
element of this key pair is a public key, which can encrypt data, making it unreadable,
but cannot decrypt it. The second key, called the private key, can only decrypt
encrypted data. Public keys can thus be sent to other users, who can use them to
encrypt data that only the private key owner will be able to read.

Envelope encryption

The basic principle behind Doctolib’'s encryption and key sharing is envelope
encryption. It combines symmetric and asymmetric encryption to provide a fast,
efficient means to encrypt and share data between different users.

First, the protocol encrypts the resource (file, data, etc.) with a randomly-generated
symmetric resource encryption key. This resource key is then asymmetrically
encrypted using each recipient’s public encryption key.

The encrypted resource keys can now safely be sent to the cloud and stored. In
Doctolib’s case, keys are stored in a separate keys server, even though Doctolib
cannot decrypt them. These encrypted keys are then distributed to their respective
recipients as needed.

Patient Keys server Doctor

The recipient can then decrypt the resource key using their asymmetric private
encryption key before decrypting the encrypted resource using the resource key.

Doctolill

Envelope encryption allows Doctolib to store and distribute encryption keys without
having access to them. This, in turn, allows users to securely upload and share
encrypted data with other users.

Secret sharing to guarantee data

aCCess

As we have seen earlier, the Tanker protocol is based on envelope encryption. The
fundamental element in envelope encryption is the end user's device, on which
private keys are stored. But what happens when the end-user wants to access their
data from a different device or loses their current device?

Our challenge was to allow data to be accessible from multiple devices and to
guarantee that users won't lose access to their data without compromising the
security model.

Devices and users

To allow users to access their data from multiple devices, the protocol allows
existing devices to authorize new ones. This is done by signing the new device’s
public keys with the existing device’s private keys and sharing data with the new
device. This mechanism guarantees that only the user, who has access to an existing
device, can add new devices.

The only exception to this is the first device of each user, which is signed by a root
signature key since there are no previous devices available.

When adding a new device, the existing one could take this opportunity to re-share all
data to the new one. However, this would be highly inefficient and resource-intensive.
To solve this issue, we use an additional level of asymmetric keys: the user keys.
Instead of sharing data with devices directly, we share it with the user key. The user
key itself is shared between devices, allowing any device to access any previously
encrypted data at no additional cost.

Doctolill

Virtual devices and secret sharing

The implications of our device adding scheme are that users should always keep
access to at least one registered device. This is unrealistic in real life, which is why
we introduced the concept of virtual devices.

When a user uses Doctolib for the first time, two devices are created in the
background. The first device is a virtual device, while the second one (authorized by
the virtual device) corresponds to the physical device. The virtual device's private
keys are not stored locally. Instead, they are encrypted with a symmetric key, the user
secret, and stored in a dedicated keys infrastructure completely separate from our
main servers. The user secret is stored separately in our main authentication
servers. This scheme effectively splits the virtual device into two chunks, a process
known as secret sharing.

................... rinion - NSRRI - YRR NN
9

Doctolib servers

Keys server New device

To regain access to their data, users need to get both parts of the secret back. They
must first authenticate with the main authentication server in order to get their user
secret. Then the user independently authenticates with the key servers to get their
encrypted virtual device. Only with both these elements can the user access their
virtual device and use it to access their data on a new device.

Processes to keep data secure

For the secret sharing scheme to be secure, the two parts holding the user secret
and the encrypted virtual device must be independent. To ensure independence, we
have two completely separate infrastructures. These infrastructures are maintained
by different teams with no overlapping access rights. That's a model called
segregation of duties.

Admins of the main Doctolib infrastructure cannot access the keys infrastructure
and vice versa. Developers working on the Doctolib servers cannot modify the keys

Doctolill

Copyright © 2022 Doctolib 7

servers and vice versa. The two infrastructures are also hosted on different cloud
providers to ensure maximum separation.

Our security processes and access rights are also regularly audited and are
ISO-27001 certified.

Transparent double authentication

The two authentications required to get the virtual device back must also be
independent. This means that at no time should the user provide information to the
main Doctolib server that could be used to authenticate with the key server, and vice
versa. To achieve this, different authentication means are used.

Transparent password authentication

The first way we perform independent authentications is completely transparent for
the end-user. We achieve this by reusing the user’s password to authenticate twice.

To prevent any part from being able to impersonate the user, neither the application
server nor the keys server must ever see the password in clear. To avoid this, the
password is hashed client-side, using two different hashing algorithms: one for the
key server and one for the application server.

This way, authentication remains independent, and the users’ accounts are secure.

Email verification backup

However, users still need to register an alternate identity verification method in case
they forget their password. To this end, we use email verification.

When the user goes through the 'l forgot my password' flow, they receive a
verification link. This link authenticates with the application server. Then, a second
authentication happens with the key server this time. The user verifies their email
address or phone number by entering an 8-digit code sent by the keys server.

Doctolill

Copyright © 2022 Doctolib 8

Login to your account

erfy your email address
ou are & your emal address.
nter this

Email
A verification code was sent to

Joan.calafiore@gmail.com i .

joan.calaflore@gmail.com
Please enter it below

Password

................... 109 3 48 3 2

LOG IN

| FORGOT MY PASSWORD SUBMIT

Success, your
account is set up!

This way, the user authenticates with the Doctolib servers with the link and with the
keys server thanks to the email verification code.

Conclusion

This paper is only an introduction to the basic principles and choices we had to make
when designing Doctolib’s encryption protocol and is not exhaustive in any way. The
entirety of the protocol is open-source, as well as the SDKs we use to implement it.
They can be checked on GitHub.

Doctolill

Copyright © 2022 Doctolib 9

https://github.com/TankerHQ

